DEVOIR DE CONTROLE N°4.

<u>Classe</u>: 2^{éme} Science₃ <u>Date</u>: 21 Mai 2011 <u>Durée</u>: 1 Heure

LYCEE SECONDAIRE Rue F. Bourguiba, Année Scolaire : 2010-2011

EXERCICE N°1:

• Soit f la fonction définie sur IR par : $f(x) = 2(x + 1)^2$.

a- Etudier les variations de f.

b- Construire la courbe représentative de f dans un repère orthonormé (o, i, j).

2 Soit la droite \triangle d'équation y = x + 2.

a- Tracer dans le même repère la droite Δ .

b- Trouver les coordonnées des points intersections de ζ_f et Δ .

c- Résoudre graphiquement, l'inéquation : $2x^2 + 3x \ge 0$.

3 Soit la fonction g définie sur IR par $g(x) = 2x^2 + 4x + 1$.

a- Vérifier que pour tout réel x, on a : g(x) = f(x) - 1.

b- Expliquer comment obtenir ζ_g à partir de ζ_f puis tracer ζ_g dans le même repère.

9 Soit la fonction h définie sur IR par $h(x) = 2x^2 + 4|x| + 1$.

a- Montrer que h est une fonction paire.

b- Donner l'expression de h(x) pour $x \in [0, +\infty[$.

EXERCICE N°2:

A) Dans un triangle ABC, on donne : AB = 4 cm, BC = 7 cm et $\triangle ABC = \frac{\pi}{3}$

• Calculer l'aire du triangle ABC.

Calculer la distance AC.

B) Soit $x \in [0, \frac{\pi}{2}[.$

1 Montrer que : $\frac{1}{1+\sin x} + \frac{1}{1-\sin x} = 2 + 2\tan^2 x$.

2 Sachant que tanx = 2, calculer cosx et sinx.

2) Soit $x \in [0,\pi]$, on donne $f(x) = \frac{\sin^2 x}{1 + \cos^2 x}$

• Calculer $f(\frac{\pi}{3})$ et $f(\frac{\pi}{2})$

2 Montrer que $f(\pi - x) = f(x)$, en déduire $f(\frac{2\pi}{3})$

3 Montrer que pour tout $x \in [0,\pi]$, on a : $f(x) = -1 + \frac{2}{1 + \cos^2 x}$

9 Soit $\alpha \in [\frac{\pi}{2}, \pi]$ tel que : $f(\alpha) = \frac{7}{25}$. Montrer que : $\cos \alpha = -\frac{3}{4}$.

